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Abstract Analysis of the interaction between a triple junction wedge crack and the pile-ups of
grain boundary dislocations is used to investigate crack nucleation. Through the numerical solutions
of a system of integral eq uations. the rearrangem.ent of the dislocations and the stress redistribution
due to the crack formation arc fully taken into account in the analysis. Under remote tension.
numerical results are obtained for the stress intensity factors. the dislocation populations on the
grain boundaries. as well as the equilibrium crack I.engths. The dependence of the crack length and
the crack stability on the grain boundary orientations and the pile-up lengths is mvestigated.
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I INfRODLCTION

Wedge cracks at triple junctions are frequently observed in polycrystalline materials. In
metals, the possible crack nucleation mechanisms can arise from the absorption and dis­
sociation of lattice dislocations in grain boundaries, leading to (i) pile-ups of glissile
extrinsic grain boundary dislocations (EGBDs) around triple junctions, (ii) singular or split
disclinations at triple junctions, and (iii) disordered network of sessile grain boundary
dislocations on grain boundary planes (Nazarov ct ai., 1993). These structures are con­
sidered as the constituent elements of a non-equilibrium grain boundary, and have sig­
nificant effects on the flow and fracture behavior of polycrystalline materials. For instance,
Nazarov (1994) investigated the role of non-equilibrium grain boundaries in the yield and
flow stress of polycrystals. Rybin and Zhukovskii (1978) analyzed crack nucleation due to
a disclination mechanism. and Gutkin and Ovid'ko (1994) compared crack nucleation at a
triple junction disclination to the local amorphization of the junction. Wu and Niu (1995)
investigated crack nucleation due to the pile-ups of EGBDs at triple junctions in poly­
crystalline ice by a continuous modeling of the dislocations. W LI and Zhou (1996a) pursued
a similar investigation using discrete dislocations. Picu and Gupta (1995) investigated crack
nucleation is columnar ice due to the grain boundary sliding mechanism.

Various approximations are used in the above-mentioned crack nucleation studies.
First, the redistribution of the EG BDs or disClination stress field by crack formation is
ignored in calculating the stress intensity factors (SIFs). Second, an approximate model of
a wedge nucleus formed by the EGBDs is used in the works of Wu and co-workers. The
model assumes that all the EGBDs in the pile-ups enter the head of the wedge crack and
that no redistribution of theEGBDs in the crack is possible. Smith and Bamby (l967)
proposed a model that does take into account stress redistributions and the rearrangement
of dislocations within a crack, but the model is restricted to a single shear crack interacting
with a coplanar group of edge dislocations piling up against the head of the crack. Third,
it is always assumed in the above-mentioned vvorks that a wedge crack forms with a single
branch on one grain boundary. The possibility of a crack with two or three branches along
the grain boundaries is not considered.

This paper attempts to remove the above theoretical deficiencies, i.e., the stress redis­
tribution caused by crack formation, and the interaction between EGBDs and wedge crack.
A wedge crack of a single branch is considered, although multiple branches can also be
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analyzed without difficulty. A nucleation model is also proposed in which the EOBDs on
a boundary coalesce to form a crack nucleus. The nucleus may extend under the wedging
action of the EOBDs on the other two boundaries. The SIFs of the wedge crack under
remote tension are numerically computed and used to determine the equilibrium length
and the stability of the crack. A further analysis determines whether the nucleation of the
crack is energetically favorable.

Certain assumptions remain in the present analysis. In particular, the local het­
erogeneity of the grains associated with their elastic or thermal anisotropy is not taken into
account. Any image stresses due to the grain boundaries are neglected. The EOBDs are
taken to be edge in character with their Burgers vectors tangential to the grain boundary
planes. Also. the plane strain condition is assumed.

The theoretical approach is based on the continuous modeling of the EOBDs and the
continuous dislocation modeling of the wedge crack. This is described in Section 2. The
theory leads to a system of integral equations with the dislocation densities of the EOBDs
and the real crack as unknowns. Section 2 also contains a description of the nucleation
model. Numerical results of the SIFs obtained by solving the integral equations are pre­
sented in Section 3. The equilibrium crack lengths and the stability characteristics are also
given in this section. I~·inally. a list of conclusions is provided in Section 4.

2. THEORETICAL MODELING

2.1. Problem description
Consider a wedge crack interacting with two groups of EOBDs on the grain boundary

planes (see Fig. I). A global x-y frame with origin at the triple junction is used for reference.
The EOBDs pile up around the triple junction under a remote uniaxial tension a; in the
.v-direction. The grain boundaries to the right, upper left and lower left of the triple junction
are denoted by I, 2 and 3. respectively. Similarly, the grain boundary orientations with
respect to the x-direction are denoted by 0'1' q = 1,2, 3. The length of crack) is denoted by
~ (ll is shown in Fig. I). The sources of the EO8Ds are located at the distances (, from the
triple junction. The distances Iq are thus equal to the pile-up lengths. Local coordinates St.

k = I, 2, 3 or t., are used to describe positions within pile-up groups. while ,v, or ii are used
to describe positions within the crack. The coordinates .\/( and 5, refer to the positions at
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Fig. I. The interaction between extrinsic grain boundary dislocations and a triple junction wedge
crack.
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which the forces or stresses are of interest, while t'l and i; are the source points, i.e. the
positions of the defects causing the forces or stresses. Furthermore, local frames xqJ'q are
attached to the EGBDs. The local orientations of the EGBDs are specified by (P q with
respect to the x-direction.

2.2. Equilibrium conditions and boundary conditions
Under the remote stress amplified by the crack, the continuously distributed EGBDs

pile up in equilibrium around the triple junction. At each location Sb k = I, 2, 3 within the
pile-up on boundary k, the shear stress due to the remote loading (Sf) and the crackj (tik ,

i = 1,2 or 3,j i= k) acts on the EGBD distribution. This is balanced by the shear stress Fqb

q = I, 2, 3, q i= j of all the EGBD distributions. The symbol Sr. denotes the resolved shear
stress on boundary k. The contribution t ,k is a function of the dislocation strength density
'Xi of the crack and the positions Sb where 'Y.,' is in general complex and has the unit of stress.
The contribution f~lk is a function of the dimensionless dislocation densities Pq of the pile­
ups and the positions Sk' The equilibrium conditions for the EGBDs on the boundaries k
can then be written as:

I J\!!,(P'I' ,I'd + F,k('X/' .I'd + ,S'{ = 0 0 < s\ < h ~ k i= j.
1,(( :;':)

(I)

Note that (I) actually consists of two equations corresponding to the equilibrium conditions
for the two pile-ups on the two boundaries without the crack.

The crack, modeled as a continuous distribution of dislocations, is assumed to be
traction-free. These dislocations are called crack dislocations in contrast to the physical
dislocations (EGBDs). The normal and shear stresses on the crack j can be attributed to
the crack dislocations on boundary j, the EGBDs on the other two boundaries and the
remote stress. The normal stresses due to the three contributions are denoted by lili , N",
and iV:, and the corresponding shear stresses by :51;, Sq; and S', . Summations of the normal
and shear stresses on crack j I, 2 or 3 lead to:

j

iVil(?:;,.vi) + I ll/<)l(p,!,~,) + N,.' == 0 0 < ,\', < li'
(! 1·,(/'1':/

Sli('Y.1' .1'1) + I S'I/(p,!, .1',) +S/ = 0 0 < ,\', < ~.
q 1,(( ,Ii

(2)

(3)

Equations (I )-(3) constitute a system of four singular integral equations of the Cauchy
type (see Section 2.4).

2.3. Stress field oj' dislocation groups
The stress field of dislocation groups can be derived from that of a discrete edge

dislocation in an infinite body. It is most convenient t.o write down the relevant stresses
using the method of ~gll1plex functions. Specifically, consider the complex variable
:: = .x+ iy, where i = "'1/' -- I and x .. yare the global coordinates indicated in Fig. I. The
circumferential and shear stresses O'oo+iO"1! in the usual polar frame,-O can be written in
terms of the complex function ()l(Z) and '¥(z) as follows (Muskhelishvili, 1953) :

(4)

where e is the exponential, the overhead bar denotes complex conjugation, and the prime
denotes differentiation with respect to the argument. The complex functions for the case of
a discrete edge dislocation at z = 20 are given by :
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where
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(5)

(6)

is the strength of the dislocation. In (6), b is the Burgers vector magnitude, ¢ is the
orientation of the dislocation, Ii is the shear modulus, and K = 3-4v for plane strain; v
being the Poisson's ratio.

Consider an EGBD with local orientation ¢q and Burgers vector magnitude hq. Suppose
it is located at z = Zo on grain boundary q so that Zo = to) eiO". The shear and circumferential
stresses are needed at some location z on a boundary. The location z can be that of another
EGBD on boundary k in which case z = ,1\ eiO

!.• or a crack dislocation on boundary j. in
which case z = .vi eiO

,. Substituting (5) in (4), the circumferential and shear stresses on
boundary k or j can be derived after some algebraic manipulation. If z is the location of
the second EGBD with orientation (PA. then the stress components are written in the local
frame of the second EGBD. This is achieved by setting 20 in (4) equal to 2(/)j. Then. the
stresses can be expressed in terms of to). s,._ 0". 0". (Po) and (,OJ as:

(7)

where

21ibqD = ...•................. (8)
n(K+ I)

B = [.Ij sin(lh + ¢'I- 2¢d t,! sin(O,! -h/l ,/'- 2¢{}J

+i[.I'jCOS(Ok + (p,,-21);.}-tqcos(Oq+1)q 2(/h)]. (12)

C =1,. [sf sin(30k -1)" 2(Pk) + t,; sin(20q + OJ - ¢q - 2(Pj)

-2,I/,t" sin(20k+ 0'1--1>.; -·2¢{}J +isdsf cos(30k -¢q-2¢{}

+ t~ cos(20" + Ok .- (p" - 2¢d - 2s, tqcos(20,: + Oq - 4)q- 2(pk)]. (13)

E = t,,.[sf sin( (/)'1 - O,! -' 2°1, + 2(pd + I,; sin( ¢q - 3()" + 24)d

-2Sk l" sin«(/)" 20'I-li,. +2¢dJ ---ilq[sf cos(cPq-0,,-2(h +21)1.)

+ I,; cos(c!),,- jO'1+ 24)d -2s'!'1 cos«(P,,---20'I-Ok +2(pdJ. (14)

and A is the complex conjugate of A. Note that D. FI and F2 are real. If z is a point on the
crack, 28 in (4) equals 20i since the stresses in (2) and (3) are to be added in the polar
coordinates determined by the grain boundary orientations 0i' Also ..1\ in (7)·( 14) should
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be replaced by ,I~i' the location of the crack dislocation on boundary j. Then the stress
components can be expressed as:

(15)

where (t, replaces </h in FI , f~. A, X B, C and E [see (9) (14)J. Equation (7) or (15) gives
the stress field of a single EGBD of Burgers vector h,1' For a continuous distribution of
density Pq on boundary q, (7) and (15) should be replaced by:

(16)

in which p,/dtq replaces h'l of (8). Note that Pq is an unknown function of 1,1'

Consider next a crack dislocation located at z = .:'[) on a grain boundary j. The shear
and circumferential stresses are needed at some location z on a boundary. In this case,
z[) il e/o, and.:' = ,1\ e/O' (for EGBD location) or.:' = ,VI e/O' (for second crack dislocation),
Equation (5) can also be substituted in (4) to obtain the stresses. The strength :Xi :XRi+ {:Xli
rather than the density P" of (16) is chosen as the unknown. The circumferential and shear
stresses at the location of an EGBD (orientation (pk) on boundary k can be expressed in
terms of ii' .1'/" 0" 0,. :Xi and (/1, as:

G+G+H P-Q
F

I
+ F

c
' (17)

where

G = [(.1', cos 0, - ii cos O/)a lll + (.1'), sin (),- i l sin O/)O-:JJ

+ i[(s, cos Ok - if cos O/)O-:J/ -- (.1'1; sin (Jk- ii sin 0ih<.J (18)

H = (Sk cos(2</h -(hJ - iicos(2(pl; -O/l)aRI + (Sk sin(2(P/. Od--il sin(2¢, (1))'J.),

+ i[ - (.II! COS(2¢k --- 0d if cos(2</h- O/))'J.li + (SI; sin(2</11;-- 0d -- i, sin(2¢1; -- O,))O-:R;]. (19)

P [.1'1 cos(2¢" - 201; - O/) + i;' cos(24h - 30/) -- 2sJ/ cos(2qh --- 20/- Odl:x ll;!,

-[.1'1 sin(2¢k- 2(h--0,)+/7 sin(2q)1; ---30)-2sJisin(2q)k--20i OdJo-:J,

+ i([s1 sin(2¢1; - 201; -- Oil + if sin(2</h - 30/) 2.1'" i/ sin(2(/)/i 20,- O/J]:XII;!I

+ [.1'1 COS(2¢k - 2(h - 0/)+ iJ cos(2¢,- 30) - 2sl i, cos(2¢1;- 201- 0, )]:xlii/). (20)

Q = [if cos(2q)/, - 20i - 01;)

- [il sin(2q)1 20j - (td + .1'1 sin(2¢1 -- 3tJd 2,lli, sin(2¢1 -- 201 - OJ)Jal/,lk

+ i([iJ sin(2c;1)1 20/ - Od + .1'1 sin(2¢1; - 30kl-- 2,1'1; (sin(2(!)1 - 20k - O/)]O-:II/,I'k

+ [if COS(2¢k - 20,- OJ -+ .1'1 COS(2¢k 30d -- 2,11; if cos(2</h - 201; - O/)]:X/isd, (21)

When z denotes the location of a second dislocation on boundary j, then the stresses at :::
can be written as:
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where qh in (17) . (21) is replaced by Or For a continuous distribution of crack dislocations
on boundary), (17) and (22) should be replaced by:

(23)

The variable 'Y., in (17)- (23) should now be interpreted as the strength density with the unit
of stress. Finally, it is noted that rPi and (/h can be set equal to fJ, and 0", respectively, in all
the above equations without loss of generality since the EGBD orientation and the grain
boundary orientation are either the same or differ by 7L The difference of TC will be reflected
in the sign of the predicted dislocation density.

2.4. Integral equations and additional conditions
Substitution of (16) and (23) in the equilibrium and boundary conditions (I )--(3) yields

a system of singular integral equations of the Cauchy type. For a crack on boundary), the
four equations can be written as:

o< .\,. < I" k = 1.2,3; k i= j, (24)

-t- " .'~*' f'7[(;~~LI) Re C·4(t",/!/t.,~;t~!':~i) + S'~!'Ef~~C1V~' Si») d1" +N/. = o.

o< \:, < 0, j = 1.2 or 3. (25)

I' 1m (!!f;(/::~;5J) + P(ii"'~I;i!,)(~5~1L"~I;'Y.l))dii+'J t/ f"~(~~"'i)

x 1m (;Y~,'.~J,\ + (·(t'lj~~C.~Y'I':~l»)dlq+S/ = 0, 0 < ,I'i < I" j 1,2 or3,

(26)

where "Re" and "1m" denote the real and imaginary parts, respectively. Also, S{ in (24)
is the shear stress transformed using the local dislocation orientation rPb while NT, SI are
the normal and shear stresses transformed using the grain boundary orientations (Ji' The
unknown functions are Pq and (i.R, and (i./i' It can be shown that the singular terms of the
integral equations are of the forms 1/(.1''1- 1'1) and I/(.fi- t~).

Equations (24)-(26) can be normalized to the intervals -I ::::; (,. SA ::::; I and -I ::::; i;,
,~; ::::; I by using
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(27)

and similar equations for S; and §:,. Then, the method of Gerasoulis (1982), which has been
applied to solving singular integral equations in kinked crack problems, is adopted. The
method involves writing the unknown densities as the product between a weight function
IV and certain unknown regular functionst;rJ~:i'and/;!, i.e.,

The one-half singularity is built into the weight function at the extremities of the cracks
and the pile-ups. Strictly speaking, the singularity assumptions at both ends of the pile-ups
and at the head of the crack may be incorrect. The method, however, relies on the use
of the regular functions and certain additional conditions to numerically correct these
assumptions as explained below.

The regular functions I" J~, and .!;i are approximated by piecewise quadratic poly­
nomials which are substituted in the integral equations. If the range [-. I, I] is divided into
R intervals, then the unknowns become the values of the regular functions at the R + I
boundary points of the range I I. IJ. When these quadratic polynomials are divided by
(1 t',~) 12 or (1 -- [':')1", exact integrations can be carried out in (24)-(26). Collocation at
R points within the intervals then leads to a system of R linear algebraic equations with
R +] unknowns. In total, there are 4R equations in 4( R+ I) unknowns. An excess of four
unknowns requires an equal number of additional equations.

The first two additional conditions are obtained by taking the functions/." at the two
sources on the boundaries without the crack to be zero, i.e ..

f,/ I) 0 if =, I, 2, 3; if =1= j. (29)

These conditions are intended to remove the singularity of p,,(t~) at (I I, since no
singularity is expected at the sources (see, e.g., Hirth and Lothe (1982) for the results of a
stressed single pile-up). In (28), the function p,,((J is written in the same form as
rxR,U;) + irxl,U;) in order to simplify the numerical scheme for solving the system of integral
equations. All numerical results show that Iim(l'] P(I ((!l = 0, confirming that the singularity
is effectively removed in the numerical calculations. The conditions pq(l) = () were directly
used by Vladimirov and Khanhanov (1969) in their discrete-continuous examination of
dislocation pile-ups.

The next two additional conditions are derived from the analogy with kinked cracks.
The singularities at the head of the crack may not be equal to one-half as assumed in (28).
The crack, however, can be visualized as a kink wedged open by EGBDs. The usual
treatment is to ignore the integration point at the head of the kink. This is effected by
setting.!;,: and/;, to zero at this point (e.g., Lo, 1978; He and Hutchinson, 1989) :

(30)

Unlike (29), (30) does not necessarily imply that rx R!( I) + {rx l / - I) = O. Numerically, it is
found that lim;i' I [rxRiU;l + irxl,U;)] =1= O. The two sets of conditions (29) and (30) together
yield four additional equations.

The singularities at the heads of the pile-ups are taken to be one-half and the regular
functions I, are relied upon to numerically correct the assumptions where necessary. No
additional conditions are used. The singularity at the crack tip is assumed to be one-half.
The effectiveness by which the regular functions correct the assumptions increases if the
number of collocation points increases. Niu and Wu (1997) showed that in the case of
strongly interacting kinked cracks R should be at least J60 for good accura(~y.



4344 M. S. Wu and M. D. He

If the sign of the remote uniaxial loading is changed. it can be seen from (24)-(26) that
the solutions p". (1 li i and (1u will reverse their signs. Consequently, the SIFs will also reverse
their signs. Thus. a negative K[ can arise in some cases, implying the possibility of closed
cracks and frictional sliding. The issue will not be addressed in this paper. It should be
mentioned, however. that an approximate treatment in crack nucleation models is to set K[
to zero when it is negative and to assume that the crack nucleates under a pure mode II
condition (e.g., Wu and Niu, 1995).

To link the continuous approach to the discrete approach, the following non-integer
dislocation population nq can be defined:

(31)

where q = 1,2,3; q i= j and the repeated subscripts do not imply summation. Negative
values of fI" imply that the dislocations have negative Burgers vectors. The populations can
be determined after the dislocation densities have been determined.

Once.h and '/;i are obtained, the mode I and mode II stress intensity factors K; and
Kil, j = l. 2. or 3 can be computed from the stresses near and outside the cracks. The only
non-vanishing contribution comes from the singular stresses of the crack dislocations
associated with the crack itself. Consequently, letting Si -> ii from outside the crack and
converting to normalized units, the stress intensity factors can be written as:

.. / rl
, [.... (2G+H P--Q)\ (( H P-Q)] ,K i +iKI = .lim /In(\'-I) Re- +-- +iIm + dt

I II ,.' y - .. i iFF, F . F, . j
,. " ,,0 _ 1 ~, , 1 .:.-. 'j,S"J)i

(32)

2.5. Equilibrium crack length and nucleation model
For plane strain, the equilibrium crack length can be determined from the solution to

the following equation:

(33)

where E, is the energy of the crack system, i is the crack length, 2;' the surface energy per
unit length. ~fj the energy release rate, p the shear modulus, and v the Poisson's ratio.
MUltiple solutions to (33) may exist. A crack is stable ifit satisfies D2E,JD/2 > O. It is unstable
if D2E)i'/2 < O.

To determine whether the nucleation of the crack with length predicted by (33) is
energetically favorable, the following nucleation model is proposed. Under remote loading.
EGBDs are generated by three sources located at the distances 1'1 from the triple junction.
They pile Up around the junction with group energy E,,. Analysis of the pile-ups in the
absence of cracks is carried out using (l). which now consists of three equations with k =1,
2 and 3. The conditions q i j and k i j become irrelevant. The EGBDs on one of the three
boundaries. however, may coalesce to form a crack nucleus. The nucleus may extend under
the wedging action of the EGBDs on the other two boundaries. Work is done during the
coalescence of the EGBDs, and this is estimated as the work It' required to move an
equivalent superdislocation from the center of gravity of the pile-up to the triple junction.
The Burgers vector magnitude of the superdislocation equals the integral of the dislocation
density on the boundary. The nucleation of a crack is favorable if
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(34)

Integration of (33) leads to E, = 2},i -- J~) (t} di plus an integration constant which should be
equal to E

4
- W. Therefore, (34) becomes:

E,,-- E, = 1'1 (t}di--2')'i+ W> 0,
..10

(35)

where the lower limit of the integral corresponds to the size of the crack nucleus and is
approximated as zero.

3 'JU:v1ERICAL RESULTS

3.1. Physical and numerical model parameters
As an example, parameter values appropriate for polycrystalline aluminum are chosen.

The shear modulus and the Poisson's ratio are p = 26.0 GPa and v = 0.347. To compute
n'l using (31), the Burgers vector magnitude of all the EGBDs is taken to be
b'l = h = 2.1 x 10 10 m. In general, b'l depends on the crystallographic details of the adjoin­
ing grains. Also, a mean grain boundary length III 50 InTI is assumed, A remote uniaxial
tensile stress V,: of magnitude 20 MPa is applied. Furthermore, the following reference
parameters for Iq and ii are defined. For q, j L 2, 3, 1'1 = 0.15 10 and~, 104 b = 2,1
pm = 0.042 10 , The values of 1'1 are varied from "', 0_015 10 0.15 In, i.e., the sources are close
to the triple junction. Values of i, up to approximately 10 are considered_ Reference values
for the boundary orientations are 01 10.0, 120 and 03 = 240.

Comparison of the stress intensity f~lctors computed using R 60, 180 and 240 show
that numerical convergence is attained at R = 240 for all variations of the physical par­
ameters considered. Convergence is less rapid for very short crack lengths, and is faster for
mode I SIFs than for mode II SIFs. All results presented in this paper are generated with
R 240.

3.2. Dependence ()/SIFI' and dislocation populations on grain boundary orientations
Consider a single crack on boundary 2. The dependence of the SIFs and 11'1 on the

variation of 8q are shown, respectively, on the left and right columns of Fig. 2. Note that
01 is varied from 0--90, O2 from 90--180), and 0) from 180--270. In each variation, reference
values of all the other parameters are used.

The dependence of K] and KIJ on 0'1 is complex. Both SIFs change sign as 01 and 0,
increase through 90. The dependence on 02' the orientation of the boundary containing
the crack is less significant compared to the dependence on 01 and 03' The SIFs display
extrema in the variations with 01 and 0) but not with O2, The implication is that certain
combinations of boundary orientations can be more favorable for crack nucleation and
growth. Thelargest amplitude of the mode lor mode II SIF in this example is approximately
0.5 MPa ,,/m. Furthermore, the dislocation populations are predicted to vary between 0
and 300, depending on 0'1" The peak values of K1 and Kn do not necessarily correlate directly
with the peak values of III and nJ. This suggests that crack nucleation or growth can be
associated with relatively small pile-up populations.

3.3. Dependence of SIFI' and dislocation populations on pile-up lengths alld crack length
The dependence of the SIFs of a boundary 2 crack on II and IJ (normalized by 10) as

well as its own length i2 (normalized by b) are shown on the left column of Fig. 3. The
predicted dislocation populations are shown on the right column of Fig. 3. Except for the
variations of the lengths shown on the horizontal axes, all other parameters assume their
reference values.

At first observation is that the amplitude of KI decreases, whereas Kit increases, with
II or I,. In general, the details of the dependence of the SIFs on I,{ depend on the boundary
on which the crack is located. It can however be concluded that longer pile-ups do not
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Fig. 2. Variations of the stress intensity factors and the dislocation populations Il, and n3 (non-
integers) with the grain boundary orientations 0" 0, and 0,. The crack is on boundary two.

necessarily imply larger SIFs. Both K[ and KII decrease with i2 generally, as expected for a
wedge crack. For moderately long cracks (log(!2/b) > 3.5) K, increases with i2, however.
This reflects the increasing dominance of the remote tension as the crack lengthens. Fur­
thermore, the plots of the dislocation populations suggest that no simple relations exist
between the variations of the populations with variations of the SIFs. For instance, a
decreasing K[ with I) is associated with increasing populations. Finally, it is seen that the
dislocation populations on boundaries I and 3 decrease with i2, i.e., the dislocations are
predicted to either enter and rearrange within the crack or reabsorb at the grain boundary
sources. The increasing populations at large 12 , on the other hand, show the complex
interaction between the remote tension, pile-ups and crack.

3.4. Equilibrium crack lengths and stability characteristics
The crack is assumed to nucleate on boundary 2. The normalized crack length log(i2/b)

is plotted against OJ, °2, (I) and 11/10, /3/10 in Fig. 4. For each parameter that is varied, the
other parameters are kept at the reference values except for the crack length which is
predicted using (33). Four classes of crack length solutions are predicted: stable, unstable,
energetically unfavorable, and non-existence.

A multiplicity of solutions may exist at certain combinations of grain boundary
orientations. For instance, for a given 01 two solutions exist in the range 30 < 01 < 60.
The smaller and larger solutions are predicted to be either (i) stable and unstable, (ii) stable
and energetically unfavorable, or (iii) unstable and stable. Also, the two solutions appear
to converge to the same value at 01 ~ 45> and then diverge after this value. Within the
range OC < 01 < 90, 12 varies between 10°3 and 1053b, or between 0.000419 and 41.9 ).lm.

The smaller value is close to 2b. This small value, predicted by the continuum theory,
should be interpreted as an approximation of the crack length. In the variation of°3, a
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Fig. 3. Variations of the stress intensity factors and the dislocation populations fI, and II, (non­
integers) with the pile-up length flo f, and the crack length f2• The crack is on boundary two.

maximum of three solutions or no solutions at all are predicted. For instance, in the range
1900 < OJ < 220", the single, pair or triplet ofsolutions are found to be either (i) energetically
unfavorable and stable, (ii) stable, (iii) stable, energetically unfavorable, stable, or (iv)
stable and energetically unfavorable. No solutions are found at 03 = 2600 or 270°, Note
that 12 also varies through five orders of magnitude as 03 increases through 90°. In contrast,
only one solution is found for a given O2 in the range 90° < O2 < 1800

• All the solutions are
also very small, of the order of a few Burgers vectors. Changing O2 causes 12 to change by
less than one order ofmagnitude. Finally, the crack lengths increase with the pile-up lengths
in this example, although the increase is less than one order of magnitude for the total
variation of ...... 0.15 '0'

Very different crack length characteristics are predicted when the crack is on boundary
three, as shown in Fig. 5. First, no solutions less than 10 are found in the entire ranges of
03,/1/10 and 12ilo investigated. Short cracks between band 100 b are found in the variations
of 01 and {)2. In at least one case, O2 = 180', two solutions, stable and unstable, are found.

Experimental data suggest that both submicroscopic cracks «0.05 ,urn) and micro­
scopic cracks (1-50 ,urn) can be observed in polycrystalline metals (Regel et al., 1975;
Rybin and Zhukovskii, 1978). These observations are in broad agreement with the present
theoretical predictions. Other mechanisms, such as that due to triple junction disclinations,
however, may also be operative (Wu and Zhou, 1996b).

3.5. Further discussion
Future investigations would need to take into account several additional phenomena.

First, frictional contact of the crack faces is likely to occur since negative mode I SIFs are
predicted. Second, EGBDs can be prevented from piling up at the triple junction by trapped
heterogeneities on the grain boundaries. Thus, analysis of the interactive pile-ups in the
presence of these heterogeneities should also receive attention. Third, the importance of the
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Fig, 4. Predictions of the equilibrium lengths of a crack on boundary two, The parameters inves­
tigated include the grain boundary orientations an the pile-up lengths of the dislocations. Multiple
solutions corresponding to stable, unstable, and energetically unfavorable cracks are predicted for

certain grain boundary orientations. No solutions can be found in some cases.

variations of the crystallographic orientations around the triple junction will need to be
assessed, as already mentioned in Section 1. Fourth, whether a crack is more likely to
nucleate on one or another of the three boundaries is not investigated in this paper. This
can be done by comparing the values of Eq-E" in (34). Moreover, the possibility of crack
branching is yet to be investigated. Finally, the present results show that the crack lengths
span at least five orders of magnitude. It remains to study the statistical characteristics of
the crack length distributions in a random polycrystal.

4. CONCLUSIONS

A model is developed for computing the SIFs of a triple junction crack interacting
with EGBDs piling up at the head of the crack. The formulation takes into account the
stress redistribution due to the crack formation as well as the rearrangement of the EGBDs.
Plane strain is assumed. The EGBDs are assumed to have Burgers vectors tangential to the
grain boundary planes. Furthermore. a crack nucleation model is proposed in which the
energy of the crack system is used to determine whether nucleation of the crack is favorable.
The stability of the predicted equilibrium crack is assessed by examining the second order
derivative of the crack energy with respect to the crack length.

Numerical results show that: (i) the SIFs display cxtrema as well as positive, zero and
negative values as the orientations are changed, suggesting the existence of favorable and
unfavorable sites for crack nucleation or growth in a random polycrystal, (ii) small EGBD
populations around the triple junction may also generate large SIFs, (iii) longer EGBD
pile-ups do not necessarily create larger SIFs, (iv) both K. and K[I generally decrease with
increase in crack length but exceptions occur when the crack is sufficiently long to allow
the applied tension to have a dominant effect, and (v) the dislocation populations may
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decrease as the crack length increases, which can be interpreted as the admission of dis­
locations into and their redistribution within the crack, or the reabsorption of dislocations
at the grain boundary sources.

Analysis of the equilibrium crack lengths shows that: (i) a multiplicity of crack length
solutions may exist for specific combinations of the grain boundary orientations, including
stable, unstable, and energetically unfavorable solutions, (ii) solutions may not be found
at aiL (iii) the predicted crack dimensions range from the submicroscopic to the microscopic
scale, i.e., from several Burgers vectors to the order of the grain boundary length, and
(iv) the stability characteristics of the cracks are highly dependent on the underlying
microstructure, e.g., the boundary on which the crack is located and the grain boundary
orientations_
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